The inverse optimal value problem
نویسندگان
چکیده
This paper considers the following inverse optimization problem: given a linear program, a desired optimal objective value, and a set of feasible cost vectors, determine a cost vector such that the corresponding optimal objective value of the linear program is closest to the desired value. The above problem, referred here as the inverse optimal value problem, is significantly different from standard inverse optimization problems that involve determining a cost vector for a linear program such that a pre-specified solution vector is optimal. In this paper, we show that the inverse optimal value problem is NP-hard in general. We identify conditions under which the problem reduces to a concave maximization or a concave minimization problem. We provide sufficient conditions under which the associated concave minimization problem and, correspondingly, the inverse optimal value problem is polynomially solvable. For the case when the set of feasible cost vectors is polyhedral, we describe an algorithm for the inverse optimal value problem based on solving linear and bilinear programming problems. Some preliminary computational experience is reported.
منابع مشابه
Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory
The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...
متن کاملInverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory
The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملOptimal results for a time-fractional inverse diffusion problem under the Hölder type source condition
In the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملCapacity Inverse Minimum Cost Flow Problem under the Weighted Hamming Distances
Given an instance of the minimum cost flow problem, a version of the corresponding inverse problem, called the capacity inverse problem, is to modify the upper and lower bounds on arc flows as little as possible so that a given feasible flow becomes optimal to the modified minimum cost flow problem. The modifications can be measured by different distances. In this article, we consider the capac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 102 شماره
صفحات -
تاریخ انتشار 2005